For the First Time, Scientists to Sequence Genes in Space

Advertisement
By Reuters | Updated: 15 July 2016 14:18 IST
Given her background in researching some of the deadliest pathogens on Earth, including Ebola, colleagues of newly arrived astronaut Kate Rubins had expected her to want to do "crazy science fiction" on the International Space Station.

Instead, Rubins pushed for carefully controlled experiments with a mix of a bacteria, a common virus and mouse cells, all already repeatedly sequenced and safe for testing in the space station's closed-loop environment.

Rubins, a trained microbiologist who arrived at the space station on Saturday, will be using the samples to put Oxford Nanopore's MinION sequencer - a pocket-sized DNA sequencer - through its paces.

The tests are intended to prove whether the technology can be used to understand microbes in the space station, to scan fellow astronauts for genetic changes that could diagnose illness, and in future missions, potentially to test samples from Mars and elsewhere for signs of DNA-based life.

Advertisement

One of the first things the scientists need to prove is just how well the machine operates in microgravity. "Technology behaves differently up here. Fluids behave differently up here," Rubins said in an interview with Reuters on Thursday from the International Space Station.

Advertisement

The MinION sequencer, which is about half the size of a smartphone, operates fundamentally differently from current DNA sequencers, said Sarah Wallace, a microbiologist at the National Aeronautics and Space Administration's Johnson Space Center in Houston.

With most sequencers, scientists put in a sample and it runs for 24 to 48 hours, then stops. The station's sequencer displays its analysis as it works.

Advertisement

"Within minutes of loading your sample, you're starting to get the sequence data back ... so how long it runs is based on the scientific question you're asking," Wallace said.

The MinION DNA sequencer is among the nearly 4,900 pounds (2,223 kg) of cargo scheduled to be launched to the station on Monday aboard a SpaceX Dragon capsule.

Advertisement

It will be the first use of the machine in space, Wallace said in a news briefing on Wednesday.

Currently, samples from space must be frozen and flown back to Earth for analysis.

"We don't get to analyze everything that is happening to human beings and to cells in real time," Rubins said.

In the future, Rubins would like to use the DNA sequencer to learn more about potential colonies of microbes that have taken up residence in the station's water system and elsewhere aboard the orbiting laboratory.

"We've got wonderful clean water, but we've got a water system that's been up here for 15 years. Do we have any microbes living in the system?" Rubins said.

If all checks out, the DNA sequencer could be used to help diagnose illness in astronauts on the space station and understand whether any disease-causing microbes are susceptible to antibiotics, helping to conserve valuable medications that cannot be readily restocked.

The device joins a suite of other diagnostic instruments aboard the station, including a polymerase chain reaction, or PCR, device that can test single genes.

"These kinds of small, portable genomic technologies are going to let us look, in real time, at what's actually happening to bone degradation, for example. What's happening to your immune system, what's happening to a population of microbes that you bring up in a culture flask?" Rubins said.

Testing the DNA sequencer in space also could pave the way for its use in remote or resource-poor areas on Earth.

"This kind of device is something you would use in the developing world, you could use this in an outbreak situation, you could use this in a clinic where you don't have a lot of resources to buy a full-scale sequencer but you can enable some kinds of diagnostic tests in really resource-poor settings," Rubins said.

Rubins said the space station is an "amazing place" to test device performance when power and data processing capabilities are limited.

"We have to engineer devices that are going to work in space stations. Those same things are going to work in the most remote regions on Earth," Rubins said.

© Thomson Reuters 2016

 

For the latest tech news and reviews, follow Gadgets 360 on X, Facebook, WhatsApp, Threads and Google News. For the latest videos on gadgets and tech, subscribe to our YouTube channel. If you want to know everything about top influencers, follow our in-house Who'sThat360 on Instagram and YouTube.

Advertisement

Related Stories

Popular Mobile Brands
  1. Realme 15T With 50-Megapixel Selfie Camera Debuts in India: See Price
  2. Amazon Great Indian Festival Sale: Deals on Smartphones, Laptops Teased
  3. India's Indigenous Vikram Microprocessor Showcased at Semicon India 2025
  4. Realme 15T 5G India Launch Today: All You Need to Know
  5. Astronomers Propose Rectangular Telescope to Hunt Earth-Like Planets
  1. BCCI Says Crypto, Real Money Gaming Platforms Can’t Bid for Team India’s Title Sponsorship
  2. Scientists Discover Hidden Mantle Layer Beneath the Himalayas Challenging Century-Old Theory
  3. Astronomers Propose Rectangular Telescope to Hunt Earth-Like Planets
  4. Microsoft Testing Native Clipboard Sync Feature to Share Text Between Windows PCs, Android Devices
  5. Su From So OTT Release: When and Where to Watch This Kannada-Language Horror-Comedy Online
  6. Sennheiser Momentum 4 Wireless 80th Anniversary Edition Launched in India With Up to 60 Hour Battery Life
  7. Call of Duty Film Adaption Said to Be a 'Priority' at Paramount, Negotiations on to Acquire Rights
  8. Cannibal Solar Storm May Trigger Auroras as Powerful Geomagnetic Storm to Hit Earth Soon
  9. Apple's iPhone 8 Plus Listed as Vintage Product Ahead of iPhone 17 Launch, 11-Inch MacBook Air Now Obsolete
  10. Hidden Reason Behind Portugal’s Deadly Earthquakes Finally Explained
Gadgets 360 is available in
Download Our Apps
Available in Hindi
© Copyright Red Pixels Ventures Limited 2025. All rights reserved.