James Webb Space Telescope Detects Possible Liquid Ocean on Uranus Moon Ariel

JWST's observations reveal potential subsurface ocean on Uranus's moon Ariel, which could transform future exploration of the planet.

Advertisement
By Gadgets 360 Staff | Updated: 23 August 2024 12:27 IST
Highlights
  • JWST finds potential underground ocean on Uranus's moon Ariel
  • Discovery includes carbon dioxide and carbon monoxide on its surface
  • Research supports the idea of a geologically active moon with subsurface

Ariel is Uranus' fourth largest moon, orbiting almost perpendicular to the its orbit

Photo Credit: NASA JPL

Recent observations from the James Webb Space Telescope (JWST) suggest that Ariel, one of Uranus's moons, might harbour an underground liquid ocean. Ariel is one of the 27 moons orbiting Uranus, the seventh planet from the Sun. The discovery was made during a 21-hour observation period as part of the “Moons of Uranus” project. The focus was on detecting signs of water, ammonia, and organic molecules, as well as carbon dioxide ice.

Carbon Dioxide and Carbon Monoxide Detected

Unexpectedly, JWST found carbon dioxide ice on Ariel, despite its distance from the sun where such ice would typically turn to gas. This ice is mainly located on the side of the moon facing away from its orbital direction. The presence of carbon monoxide, detected for the first time on Ariel, adds to the intrigue. Carbon monoxide is typically stable only at extremely low temperatures, much lower than Ariel's average surface temperature of around 65 degrees Fahrenheit.

Implications for Lunar Geology and Future Missions

The researchers propose that the carbon dioxide ice might originate from an underground ocean, with the ice escaping through cracks in the moon's surface. Another possibility is that radiation from Uranus's magnetic field could be breaking down molecules, creating the observed ice. The study also hints at the presence of carbonates on Ariel's surface—minerals formed when water interacts with rock. This could suggest a geologically active interior capable of sustaining a subsurface ocean.

Advertisement

The findings have sparked interest in a potential mission to Uranus. The Uranus Orbiter and Probe (UOP) concept, a proposed NASA mission, could provide more detailed data. With launch opportunities in the early 2030s and the need for a gravity assist from Jupiter, timely action is crucial to make this mission a reality.

Advertisement

In conclusion, the James Webb Space Telescope's observations of Ariel suggest the presence of an ancient or ongoing underground ocean, presenting exciting opportunities for future exploration of Uranus and its moons.

 

Get your daily dose of tech news, reviews, and insights, in under 80 characters on Gadgets 360 Turbo. Connect with fellow tech lovers on our Forum. Follow us on X, Facebook, WhatsApp, Threads and Google News for instant updates. Catch all the action on our YouTube channel.

Advertisement

Related Stories

Popular Mobile Brands
  1. OnePlus 15R Confirmed to Come With 32-Megapixel Selfie Camera
  1. Kepler and TESS Discoveries Help Astronomers Confirm Over 6,000 Exoplanets Orbiting Other Stars
  2. Supernatural Thriller Jatadhara Arrives on OTT: Where to Watch Sonakashi Sinha-Starrer Film Online?
  3. OnePlus 15R Confirmed to Come With 32-Megapixel Selfie Camera, 4K Video Recording Support
  4. Rocket Lab Clears Final Tests for New 'Hungry Hippo' Fairing on Neutron Rocket
  5. Apple Rolls Out iOS 26.2 Update for iPhone With Liquid Glass Customisation, Changes to Apple Music, and More
  6. Aaromaley Now Streaming on JioHotstar: Everything You Need to Know About This Tamil Romantic-Comedy
  7. Astronomers Observe Star’s Wobbling Orbit, Confirming Einstein’s Frame-Dragging
  8. Galaxy Collisions Found to Activate Supermassive Black Holes, Euclid Data Shows
  9. JWST Detects Oldest Supernova Ever Seen, Linked to GRB 250314A
  10. Chandra’s New X-Ray Mapping Exposes the Invisible Engines Powering Galaxy Clusters
Gadgets 360 is available in
Download Our Apps
Available in Hindi
© Copyright Red Pixels Ventures Limited 2025. All rights reserved.