Scientists are transforming fiber optic networks into seismic sensors to enhance earthquake detection and alerts.
Photo Credit: Pixabay/Tumisu
A new earthquake detection method uses fiber optic cables from global communication networks
A new method for detecting earthquakes is being developed, leveraging fiber optic cables used in global communication networks. Researchers have introduced an algorithm capable of converting these cables into seismic sensors, potentially improving early warning systems. The breakthrough could allow existing infrastructure to play a crucial role in monitoring seismic activity, including earthquakes, volcanic eruptions, and icequakes. This advancement is being explored as a means to enhance traditional seismometer networks, addressing challenges associated with fiber optic detection methods.
According to a study published in Geophysical Journal International, the algorithm adapts a physics-based approach to detect earthquakes using data from fiber optic cables alongside conventional seismometers. Dr. Thomas Hudson, Senior Research Scientist at ETH Zurich, told Royal Astronomical Society that fiber optic cables can serve as thousands of seismic sensors. He noted that while integrating fiber optic technology with earthquake detection has been difficult, the new approach aims to simplify the process by combining multiple data sources.
While fiber optic cables can detect vibrations, several factors complicate their use for earthquake monitoring. Their locations are often dictated by communication infrastructure rather than optimal seismic detection points. Additionally, these cables primarily detect strain along their length, whereas traditional seismometers measure movement in three dimensions. This limitation makes detecting fast-traveling P-waves more difficult, affecting the accuracy of earthquake alerts. The study suggests that integrating data from both sources can overcome these issues and improve early warning capabilities.
Beyond earthquakes, the algorithm has shown potential in identifying seismic activity in geothermal boreholes, glacier movements, and volcanic eruptions. The technique works by analysing energy patterns across sensors and pinpointing earthquake locations based on coherent signals. Dr. Hudson mentioned that the method performs well even in urban environments where background noise can interfere with conventional detection.
To facilitate adoption, researchers have made the algorithm openly available, allowing the seismology community to integrate it into existing monitoring networks. Although challenges remain, particularly in handling large volumes of data generated by fiber optic sensors, the study highlights practical approaches to manage this issue. With further development, fiber optic networks may significantly enhance global earthquake monitoring systems.
For the latest tech news and reviews, follow Gadgets 360 on X, Facebook, WhatsApp, Threads and Google News. For the latest videos on gadgets and tech, subscribe to our YouTube channel. If you want to know everything about top influencers, follow our in-house Who'sThat360 on Instagram and YouTube.
Mushrooms Could Power Future Eco-Friendly Computers, Study Suggests
MIT Physicists Discover a Way to See Inside Atoms Using Tabletop Molecular Technique
Saturn’s Icy Moon Enceladus Organic Molecules May Have Been Fromed by Cosmic Rays, Scientists Find
Researchers Use AI to Predict Storm Surges Faster and More Accurately